1. Introduction and context

2. Land Acquisition and Transfer: a global issue

3. International standards - ILMS

4. Conclusions

‘There is no such thing as an investment without property rights that are negotiable and transferable.’ – De Soto
Land Acquisition and Transfer - a global issue

• 1, 2, 5, 11, 15, 16 are directly related to Land issues
• New Urban Agenda & Rapid Urbanisation
Land Acquisition – a global rural & urban issue

Total Hectares in deals – 2000-2016

Total Area (ha) calculated as the sum of all deals, in a given country over the period 2000-2015. A “deal” is referred to as an intended, concluded or failed attempt to acquire at least 200 Ha of land through purchase, lease or concession. It can be compared to the Total Number of Deals.
International standards – working together

- IPMS: International Property Measurement Standards
- ICMS: International Construction Measurement Standards
- ILMS: International Land Measurement Standards
- IVS: Valuation of assets prepared on a common worldwide basis
- IFRS: International Financial Reporting Standards
International standards - ILMS

ILMS is a framework for:

► Enabling the due diligence reporting process on land and property matters to take place for people and legal entities.

► Strategic guidance for reporting on land and property assets in support of reporting systems such as the International Financial Reporting Standards (IFRS)

► Advancing transparency, integrity and consistency.

► Identifying what is on the ground, what information is available and the quality of the available information, rather than what is legislated or implied. This also includes recognition of gender specific issues.

► In practice, ILMS should be adopted systematically and is capable of being used in all markets whether a functioning Land Information Systems (LIS) exists or not. ILMS provides a due diligence structure for the collection and collation of land and real property surveying information.
ILMS - Coalition

ILMS is a due diligence framework and standard for land and real property surveying that supports a sustainable future both for people and legal entities. ILMS is both a standard and a due diligence framework to enable evidence-based assessment of land and property and is designed to address the current lack of transparency in land rights and land interests. ILMS recognises gender equality and pro-poor issues when gathering field information on legitimate land ownership and is also deeply connected and complimentary to other globally relevant standard and frameworks in the land acquisition and transaction space.

- Inaugural meeting of 24 coalition members at FAO HQ, Rome
- Coalition officially launched Oct 2016 (38 members (Sept 2019))
- ILMS officers
- ILMS Standards Setting Committee
- Initial global consultation: Dec – Feb 2018
- Exposure draft consultation: May – Sept 2018
- 2nd consultation end of 2018
- Over 20 drafts considered and reviews
- 6 translations (inc. Spanish, French, Russian, German, Arabic and Turkish)
- Website – www.ilmsc.org
ILMS – Fit for Purpose connectivity

Geospatial Data Accuracy Table

<table>
<thead>
<tr>
<th>(X,Y)</th>
<th>(Z)</th>
<th>Example Sources</th>
<th>Legacy Plot Scale</th>
<th>Min. Size of Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/- 50mm</td>
<td>+/- 10mm</td>
<td>Scanned surveys, measured building surveys, topographic surveys, boundary dispute surveys, area registration</td>
<td>1:100</td>
<td>50mm</td>
</tr>
<tr>
<td>+/- 100mm</td>
<td>+/- 50mm</td>
<td>Low accuracy measured building surveys, topographic surveys, high accuracy utility tracing,</td>
<td>1:200</td>
<td>100mm</td>
</tr>
<tr>
<td>+/- 200mm</td>
<td>+/- 50mm</td>
<td>Topographic surveys, aerial imagery, LIDAR surveys, low accuracy measured building surveys</td>
<td>1:500</td>
<td>200mm</td>
</tr>
<tr>
<td>+/- 500mm</td>
<td>+/- 500mm</td>
<td>Medium scale topographic surveys, infrastructure surveys, aerial imagery, UAV/LIDAR surveys, satellite imagery, parcel demarcation, GNSS enabled demarcation</td>
<td>1:1000</td>
<td>500mm</td>
</tr>
<tr>
<td>+/- 1000mm</td>
<td>+/- 1000mm</td>
<td>National mapping, general boundary mapping, aerial and satellite imagery, rural cadastral surveys and parcel demarcation, GNSS enabled demarcation</td>
<td>1:2500</td>
<td>1000mm</td>
</tr>
<tr>
<td>+/- 2000mm</td>
<td>+/- 2000mm</td>
<td>National mapping, parcel identification (rural), aerial and satellite imagery, UN GGIM Master level 0, fit-for-purpose level 1</td>
<td>1:5000</td>
<td>2000mm</td>
</tr>
<tr>
<td>+/- 4000mm</td>
<td>+/- 4000mm</td>
<td>Small scale national mapping, state land mapping, aerial & satellite imagery, national parks & reservations, UN GGIM Cadastre Master level 1, fit-for-purpose level 0</td>
<td>1:10000</td>
<td>4000mm</td>
</tr>
</tbody>
</table>

XML Data standard – ILMS as a high level protocol for other standards
The basic process
Data rich and data poor examples

<table>
<thead>
<tr>
<th>Component</th>
<th>Basis</th>
<th>Date</th>
<th>Documentary support</th>
<th>Author status</th>
<th>Information provenance (R/Y/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Land tenure</td>
<td>Land registry</td>
<td>xx/xx/xx</td>
<td>Title review</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>2 Parcel Identification (Boundaries)</td>
<td>Land registry</td>
<td>xx/xx/xx</td>
<td>Cadastre review</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>3 Land area</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Statement of area</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>4 Land use</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Local area plan</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>5 Services</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Services and utility providers</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>6 Building</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Building survey</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>7 Land valuation</td>
<td>Independent valuation</td>
<td>xx/xx/xx</td>
<td>Valuation report</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
<tr>
<td>8 Sustainability</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Sustainability report</td>
<td>Relevant professional</td>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Basis</th>
<th>Date</th>
<th>Documentary support</th>
<th>Author status</th>
<th>Information provenance (R/Y/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Land tenure</td>
<td>Verbal confirmation</td>
<td>xx/xx/xx</td>
<td>No Information available</td>
<td>Vendor</td>
<td>R</td>
</tr>
<tr>
<td>2 Parcel Identification (Boundaries)</td>
<td>Agent's verbal report</td>
<td>xx/xx/xx</td>
<td>No Information available</td>
<td>Sales agent</td>
<td>R</td>
</tr>
<tr>
<td>3 Land area</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Statement of area</td>
<td>Sales agent</td>
<td>Y</td>
</tr>
<tr>
<td>4 Land use</td>
<td>Owner</td>
<td>xx/xx/xx</td>
<td>None</td>
<td>Owner</td>
<td>R</td>
</tr>
<tr>
<td>5 Services</td>
<td>No Information available</td>
<td>xx/xx/xx</td>
<td>No Information available</td>
<td>No Information available</td>
<td>R</td>
</tr>
<tr>
<td>6 Building</td>
<td>Not applicable</td>
<td>xx/xx/xx</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>G</td>
</tr>
<tr>
<td>7 Land valuation</td>
<td>Local sales agent</td>
<td>xx/xx/xx</td>
<td>Verbal opinion</td>
<td>Local sales agent</td>
<td>R</td>
</tr>
<tr>
<td>8 Sustainability</td>
<td>Independent survey report</td>
<td>xx/xx/xx</td>
<td>Energy report</td>
<td>Tradesperson</td>
<td>R</td>
</tr>
</tbody>
</table>
3.2 Parcel Identification

The boundaries of the overall land parcel and any unique parcels therein should be described in detail to allow the overall area to be identified in an unambiguous manner. It should include:

- satellite or aerial orthomapping of the overall land parcel together with any unique parcels therein with all boundaries indicated and, where possible, presented at an adequate scale to allow clear visibility and interpretation of the features
- coordinates of each boundary corner or pivot point must be defined in a reference system, where a national CRS (coordinate reference system) is in existence it should be used – in countries without a specific national reference system, WGS 84 UTM should be used
- dependent on the local or regional availability of GNSS solutions, this should be used (in combination with other methods) for boundary demarcation and verification
- dimensions of each boundary line or arc in length and grid azimuth, as recorded at the time of survey; if obtained in any other manner specify same and state limitations and restrictions
- area/volume of parcel complete with a statement of area where possible stating any limitations or restrictions
- site plan of the overall land parcel complete with each individual parcel (cadastral or Index or whatever is used nationally).

3.2 Parsel Tanımlama

Arazi parselinin veya buradaki herhangi bir özel parselin tamamının sınırları ayrıntılı olarak açıklanmalı, böylece bütün bölge, kancığlığa yer bırakmayacak şekilde tanımlanmalıdır. Tanımlama aşağıdaki özel halleri içerir:

- Arazi parselinin ve arazide aynı parseller varsa onların da sınırlarını tamamen gösteren, mümkün olduğuna yeterli bir ölçekte büyütlerek yüzey şekillerinin net birimde görülp yorumlanabılmasına elveren, uydudan görüntüyü veya ortofoto haritası
- Her sınır köşesinin koordinatları, referans sisteminde tanımlı olmalıdır; ilgili ülkenin kendi koordinat referans sistemi (CRS) varsa kullanılmıştır – referans sisteminin sahip olmayan ülkelerde ise WGS 84 UTM kullanılarak
- Yerel ya da bölgesel bir küresel uydu navigasyon sistem (GNSS) bulunup bulunmamasına bağlı olarak sınırlarını işaretlenip görülenler için (başka yöntemlerle birlikte) bu görüşümde yararlanmak gerekir
- Sınırların oluşturulan her doğru veya yay, uzunluk ve istikamet açısı, arazi ölçümleri sırasında kaydedildiği haliley verilmelidir; başka bir şekilde elde edilmişse, yetersizlikleri ve üzerindeki kısıtlamaları da açıklayarak belirtir
- Herhangi bir sınırlama veya kısıtlama olduğunu belirten bir bildirim ile birlikte parselin alanı / hacmi açıklanır
- Bütün arazinin, tek tek her parselini gösteren plan (kadastro veya indeks haritası veya ilgili ülkede kullanılan başka bir plan)
World Bank Land & Poverty Conference 2018
Modernising Land Service delivery through the application of a continuum approach: Examining the Appropriateness of the International Land Management Standards (ILMS)
– Kat Grimsley George Mason Uni, James Kavanagh RICS

• 3 Countries: Mozambique, Peru, United Kingdom
• 3 Acquisition Scenarios: Large-scale infrastructure, Investment, Urban Informal
Conclusions

• Bring consistency and transparency by informing governance and policy decisions

• Help strengthen land security and property rights by helping legitimate owners realise the economic value of their rights

• Bring land professionals closer to the investment community

• De-risk the internal and external investment in land and property

• Enable the use of ‘informal data sources’ and highlight risk

• Aid efficiency and fair compensation in Large Scale Land Acquisition

• Help deliver large scale infrastructure and sustainable urban expansion

• Enable technology by creating a robust land acquisition data format
Contact - ILMS

ILMS Coalition officers:

Chair : James Kavanagh jkavanagh@rics.org
Vice Chair: Maurice Barbieri maurice.barbieri@clge.eu
Secretary General: Pedro J. Ortiz pjortizt@gmail.com

ILMS Standards Setting Committee SSC

Chair: Rob Mahoney robmahoney@mahgeo.com
Vice Chairs : Duncan Moss Duncan.Moss@os.uk
Thomas Jacubeit Jacubeit@jacubeit.de

Website: www.ilmsc.org