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Correction approaches

I Target the “cause”
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Dynamic Networks

High-freq. trajectory

an extension of conventional /—‘

geodetic networks

Colomina, I., Blazquez, M., 2004. A unified approach to static and dynamic modeling in photogrammetry and remote sensing. ISPRS Archives
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optional optional

Cucci, D. A, etal. 2017. Bundle adjustment with raw inertial observations in UAV applications. ISPRS Journal
Brun, A, etal. 2022. LiDAR point—to—point correspondences for rigorous registration of kinematic scanning in dynamic networks. ISPRS Journal
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Vallet, J., et al., 2020. Airborne and mobile LiDAR, which sensors for which application? ISPRS Archives
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Direct geo-referencing - point-cloud error
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Brun, A, et al. 2022. ISPRS Journal
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Use of 3D & 2D tie-points

MEMS-IMU + GNSS 1 | jdar 3D tie-points
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+ within Dynamic Networks

overlap

0.0 0.2 0.4 0.6 0.8 1.0

Geo-referencing error (m)

Improvement in point cloud quality

MEMS-IMU + GNSS MEMS-IMU + GNSS + Lidar + Camera

overlap ~




Global behavior
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Conclusions

v Dynamic Networks
{single adjustment of optical & navigation data}:
3-4 times reduced geo-referencing error

v' complementarity of 2D tie-points & 3D tie-points:
continuous control along trajectory

3. forest
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1. crop fields
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Mouzakidou, K., Cucci, D.A., and Skaloud, J., 2022. On the benefit of concurrent adjustment of active and passive optical sensors with GNSS &
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